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Given a Riemannian structure (M,g),  a hypothesis is investigated that if 
a = ~fi'=0ap c A(M) is submitted to the differential condition (g + 6 + ~)a = 0, 

= mc/h --which implies that each component of a fulfills the Klein-Gordon 
equation (A - x2)ap = 0, a ought to be interpreted as a natural complex of the 
bosonic fields. Then it is found that the complex a admits the interpretation in 
the sense of first quantization with A (M) being a convex set of states, with the 
structure of a Hilbert space over ~'. The definite spin states of bosons are then 
pure states which are not conserved by the temporal evolution. 

1. I N T R O D U C T I O N  

The ideas of  this paper  and its results should perhaps be identified as 
belonging to the realm of  a frontier between differential geometry and the 
foundat ions  of  relativistic quan tum mechanics. 

It  is well known that the K l e i n - G o r d o n  equation (K. G. subsequently),  
fails to serve as an adequate  relativistic wave equation. Nevertheless, accord- 
ing to the Yukawa idea, it does serve as the starting point  of the quan tum 
field theory (second quantizat ion) of various sorts of  the bosonic massive 
particles (usually treated in the case of the vector bosons according to the 
Proca scheme, with the auxiliary Lorentz  condition). However,  according to 
Dirac 's  deep remark, the so unders tood bosons which do not possess a 
relativistic wave equat ion (in the sense of first quantizat ion) are really not 
the " t rue"  particles in contrast  to the fermions: for these the ingenious 
Dirac ' s  idea of  executing the root  ( p ~  + p~ + p'.." + m2c2)  ~/2 by employing 
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4 •  matrices has provided for the spin s = 1 / 2  the prototypic correct 
relativistic wave equation. The theoretical physicists aware of this, long 
ago proposed some alternative treatments of bosons: here belongs the 
quantum mechanical interpretation of the photon with the wave function 
f#,,=fl#,,l~CY (Akhiezer and Berestetskii, 1965), the Duffin-Kemmer 
scheme (Duffin, 1938; Kemmer, 1939), etc. The excellent book by the late E. 
M. Corson on the relativistic wave equations (Corson, 1953) can be perhaps 
considered a "summa theologica" of the early attempts in this direction, 
covering the numerous pertinent references. More recently, K. G. equations 
for the complex scalar field have been studied from the point of view of the 
spectral theory, employing as a scalar product in an associated Hilbert 
space, the "energy scalar product" whose existence relies on the positive- 
definite energy integral of the complex scalar boson; see Weder (1977, 1978) 
for more actual references to the subject. Notice also that Weder (1977) 
indeed suggests an interesting interpretation in the sense of the first quanti- 
zation for a complex scalar boson (Weder, 1977, p. 115), although the 
problem of the meaning of its covariance with respect to the Poincar6 group 
seems to remain open. However, none of these attempts has achieved the 
status of a generally accepted physical theory which corresponds to the 
experimental facts, apart from the appreciation of the interesting nature of 
the mathematical structures considered. 

Now, the main thrust of the present paper consists in calling attention 
to the fact that the canonical concepts of the differential geometry, the 
external differential d, the Hodge star *, and the induced by these 
codifferential 8, offer us in a sense a general alternative to the standard 
"Diracization" process of the Klein-Gordon equations. 

The basic idea of this alternative is this: let V= (M, g) be a Rieman- 
nian space over a finite-dimensional differential manifold M, D im(M)=  n 
< oo, with a nonsingular metric g, carrying automatically at each point 

p G M the graded Grassmann-Cartan algebra A = ~'p'=o A? with its opera- 
tions (. 5,  + , /~)  (the field ~ being usually constrained to ~ or if), and, as 
we deal with a metrical structure, additionally endowed with the Hodge 
isomorphism* : A ? r A Y, p + p ' =  n. 

Then, d and 8 are the differential mappings: 

d : A P + A  p+t, d ( A " ) = 0 ,  d 2 = 0  (a) 
8 : A P ~ A  p-l ,  8(3 .0)=0,  82=0 

the nil-potence of d and 6 being equivalent to the Poincar6 lemma. Now, 
the Laplace-Beltrami operator (i.e., the generalized Laplace or d'Alambert 
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operator) A A t' ~ A p defined as 

A. d3 + 3d (2) 

n p and understood as a differential mapping on the whole A = fgp=oA , can be 
interpreted as: 

A = d8 + 8d 

= ( d + 3 )  2 (because d 2 = 0 = 3  2) (3) 

Hence, "d  + 8"  is a "natural  root" of A understood as the mapping 
A --, A. 

Consequently, if we make the decisive step of subjecting all compo- 
n , ,  nents of a = ~p=oap E A to the Klein-Gordon equations": 

( A -  • 2 ) %  = 0 ,  x = c o n s t  ( 4 )  

these equations are equivalent to 

(d  + 8 -  ~) (d  + 8 + x ) , , =  0 (5) 

and, if we postulate then the stronger differential condition (of the first 
differential order): 

(6) 

as its consequence, the K. G. equations (4) are automatically fulfilled. 
The procedure outlined above is exactly analogous to the standard 

Diracization process: indeed, if all components of the wave function qJk 
have to be compatible with the special-relativistic energy-momentum con- 
servation (i.e., fulfill K. G. equations): 

[p"&-(mc)2]q~k=O (7) 

meaning by & the standard quantum mechanical operators [signature 
assumed ( + ,  , , )], then these equations are equivalent to 

(V~'p~, - mc)(y"p, + mc)4, = 0 (8) 

where 4, is a column of ek's on which the rectangular matrices -/~' can act, 
these being submitted to the conditions 

3',Pv - P,7, = 0, "Y.~/. + ~,3', = 2g..  (9) 
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Then the stronger condition: 

(y~'pu + mc)r = 0 (10) 

which assures the validity of K. G. equations (7), with y~' 's realized as 4 x 4 
matrices (i.e., the minimal dimension of these compatible with the anticom- 
mutation rule), amounts just to the Dirac equations in their standard form. 

The (4) equations will be seen in the next section in the case of the flat 
four-dimensional metric of the hyperbolic signature ( + ,  , , - )  just 
equivalent to the standard K. G. equations if we identify 

~=mc/h (11) 

m being the inertial mass of the considered field theoretical complex. Thus 
the crucial equations of this paper, (6), can be understood also as a stronger 
fo rm- - "h  la Dirac"- -of  the demand that each component of the field 
theoretical complex is compatible with the special relativistic energy- 
momentum conservation p~p~ - (mc) 2 = 0. 

It should be pointed out, however, that the mathematical idea of taking 
seriously "d  + 8"  as a natural root of A understood as an operator on whole 
A, is a very general one: it applies for (M, g) of arbitrary dimensionality, 
the case of the (complexified) analytic structures, "complex relativity" 
(Plebafiski and Schild, 1976; Boyer et al., 1980), being implicitly included. 
When the structure (M,g)  is real, and the signature has an objective 
geometrical meaning, the "Diracization" of (4) to the first-order equations 
(6) still applies for an arbitrary signature. This opens a way--depart ing 
from the hyperbolic metric--also to the natural study of the "instantonic" 
aspect of the structure (d + 8 + •)a = 0. 

The first formal idea of this paper " v ~  = A + 3": A ~ A, is comple- 
mented by this second basic ingredient: a suggestion that A ( M )  which 
admits the structure of a Hilbert space, can be perhaps considered as 
generating a quantum mechanical convex set of states (Mielnik, 1974). 

Given a real structure (M, g) it is well known that if (i) the metric is 
positive definite and (ii) M is compact, then A(M)  is indeed a Hilbert 

n t l  space over ~', with the scalar product between a = ~p=Oap, ~ = ~p=O~p ~ 
A ( M )  defined by 

o,B. (12) 
p = 0  

in the sense of which d and 6 are the mutually co-adjoint operators, 
(da, #) = (a, 3fl). Notice that the assumption of compactness for M is not 
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very essential--it  can be replaced by constraining the admissible "states" c~ 
to be square integrables", (a, a) < oo, with the components of ap'S "vanish- 
ing at infinity" if, e.g., M = 2 " .  

However, except perhaps for the interpretation in the spirit of instan- 
tons theory, such "states" a without the temporal evolution seem to be of 
little use. On the other hand, if the real V. = (M,,, g,,) has the structure of 
V x • V,,_ 1, gt = dt | dt trivial, M. = ~ • Mn_ 1, g . -  1 positive definite, the 
n-dimensional metric 

g. = gl - g~-i (13) 

being thus hyperbolic, we will see that there is a natural manner of 
interpreting a ~ A ( M n )  as the set of "states" at different t ime slices, 
a ( t )  ~ A(Mn_t) ,  their evolution being governed by our invariant equation 
(d + 8 + K)a =  0, while they do form a Hilbert space with (a ' ( t ' ) ,  a " ( t " ) )  

constructed as in (12) but in the sense o f  (M,,_ 1, g,,-t). 
The basic ideas of this paper have been outlined in this section in the 

concise language of the contemporary differential geometry. For the benefit 
of the readers rather accustomed to work with physical fields as described in 
terms of the local charts, the following section will provide a concise resum~ 
of the definitions of the concepts like *, J, d, 8, and A in terms of local 
coordinatesfl 

2. LOCAL DEFINITIONS AND T H E  GEOMETRIC 
CONCEPTS USED 

Let in a coordinates chart ( x  ~' ), /z = 1 . . . . .  n, the metric of an n-dimen- 
sional Riemannian structure be given in the conventional form 

g = g . . d x  ~ | d x " =  71~he a | e h (14) 
$ $ 

where | denotes the symmetric tensor product, g~,~ = go,.) is nonsingular, 
"0,,b = "01,~b) is the signature metric (constant and numeric; a, b . . . .  = 1 . . . .  n), 
while e ~ = e2 dx ~' constitute the "n-Bein" of 1-forms. Without any general- 
ity lost, with M and g being either real or complex analytic (in the last 
case g~,~ is holomorphic in x~'), the signature metric can be assumed in the 

2For these readers who are accustomed with these concepts as outlined, say, in the Flanders 
book (Flanders, 1963), it is recommended to skip the next section, and to follow the text from 
Section 3, while checking back the definitions of Section 2, only when these are involved in the 
local arguments of the essential text. 
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form of 

]lvt~bll=lldiag( ~ ,  . - 1 , . L . , - 1 ) l  ] (15) 

n = n ( + )  + n ( _ )  

Of course, in the complex analytic case n(_) can be chosen as convenient, 
nt+~ = n - nc_ ), while in the case of the real structure the signature has an 
objective geometrical meaning. 

Now, a general element a ~ A -  Grassmann-Cartan algebra, has the 
form of a =  r p (~9 denotes the direct sum) with ap's given in local 
coordinates as 

1 
d x  u' A " ' "  A dxUp E A p (16) Odp = ~ .  Ollx I ...t.t p 

In other words, a amounts to a set of skew tensors in the standard sense, 
which can be understood as organized in the form of a column 

o~ 0 

�9 . o 

(17) 

O ~ , a  s . . .  ,o. n 

These tensors with 2 " = E ~  t,,~ p=O~p! of independent components are functions 
of x", while {x~} covers an open domain ~ ( M )  of the manifold M. 

Then, in terms of these concepts, the Hodge star * or the generalized 
duality operation, is an isomorphism * : A p ,=, Ap', p + p '  ,= n, defined by 

A p ~ ap  ---' A P ' ~  * ap  

. _  1 tq ... ~p 

P? P'? f - /  e . . p l . . .  V p , a ~ t . . . ~ p d x " '  A . . .  A dx""  

• ~ '= [de t (g~) /de t (~ lab)]  1/2 (18) 

This canonical definition applies also with II~bll chosen as convenient, i.e., 
not necessarily constrained to the diagonal form (15). Of course, e~,. . .~= 
et~,,...g,, 1, ea2...n =1,  denotes here the Levi-Civith symbol; the "fat  dots" 
denote the original places of indices which have been raised by means of the 
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contravariant metric. If 5, . is a tensor then in * a .  the coefficient at 
I �9 " �9 P ' p  . P 

dx  ~, A . . .  A dx"~, is a pseudo-tensor; a coordinate transformation x" = 
x ~ ( x  ') which changes the relative orientation of the chart with respect to the 
"n-Bein" e", affects i t - -apar t  from the usual tensorial t ransformation--by 
the factor sign [ O ( x ) / O ( x ' ) ] .  The so-defined star operation has the crucial 
property: 

A p ~ ap ~ * * ap = det ( 'qab)( -  1)PP'ap (19) 

Next, the contraction operation J (step), or the inner product, it is 
convenient to define for our purposes as the mapping J : A q • A p --~ A p -  q 
described in terms of local components as 

OLqJ~p :.~- 
q ! ( p - q ) !  

~' dx",-~ (20) a ~'1 ""t~qfltll . . .~q~ ... ,,p_q dx  . . .  

Notice that 

aqJflp = det( ~.b)( _ 1)P'CP - q , .  ( aq A * tip) (21) 

Now, as far as the differential operations are concerned, the external 
differential d: AP---,A e+z is defined in terms of the local components 
of ap by 

1 d x ~ ,  AP ~g ap -* dap ,= --~. ot~...~p.~ dxX A A ' ' '  A dx  ~p 

(-1)" 
p!  at~,,...~,.~,p.,ldx~'~ A " "  A dx~'p +' (22) 

The nil-potence of d, d 2--- 0, is obvious from this definition. For p = 0, 
d a o = a o . ~ , d x "  amounts just to the standard gradient and for p = l ,  
d ( % , d x " )  = -ai~, .~j  dx  ~'/x dx  ~ has the meaning of the rotation, being thus 
for arbitrary p a generalized rotation. 

Then, the notion of codifferential 6: A P ~ A  p-~, (3A~ is de- 
fined by 

A p ~ ~p ~ (~O~p := de t (Gb)  ( - 1) "p + ,,+z �9 d * % 

- ( - 1 ) P  dx ~'' A " "  A d x ~ . - ' ~ A  p-1  
( p - 1)! %' ... ~- ,o; ,  

(23) 
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The nil-potence of 8 follows from this definition as a consequence of (19) 
and d 2 =0 .  In the local expression for 8 , ( . . . )  :~ ,= ( . . . ) :"g~176 and " ; a "  
denotes just the usual covariant derivative defined in terms of the Chris- 
tophel symbols (~v } The concept of 8 thus amounts simply to the usual 
covariant divergence of a skew tensor. 

Now, in order to understand the specific choice for the factor in the 
t l  r l  first line of (24), consider for a = ~p=oap,  fl = ~p=Oflp being two arbitrary 

elements of A, the bilinear form: 

p=0  

p=0  

-/ i  
 p=0P" .. 

(24) 

The invariant definition of 8 is just so arranged that for every a, fl ~ A: 

{" } 
p=0 

= an exact n-form (25) 

(Verifying this, one uses the Leibnitz property of the external differ- 
entiation, a ~ A p --* d ( a  A f l )  = d a  A fl + ( - 1)Pa A d]3.) 

Notice that with N ~ M being a domain of M and 0N being its 
boundary, if we define 

( a ,  f l ) ~  ,= f s [ a ,  fl] (26) 

then according to Gauss-Stokes-Ostrogracki theorem 

I I  

(27) 

Finally, we shall provide the local representation of the Laplace- 
Beltrami operator A ,= d8 + 8d. Let R~v 8 be the curvature tensor induced 
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by g~,,, R ,~  ,= R~O o the Ricci tensor, while R := R~ is the scalar curvature.  
Then  

R 
R~ =: c~ + ~ - 2  8;~:q + .  ( .  _ 1--------~ 8~y (28) 

where Caa ,= Ra/3-(1/n)g~aR is the traceless par t  of  the Ricci tensor, and 
6 ... are the generalized Kronecker  6 's defines the totally traceless confor-  
mal  curvature  tensor CA~ 8. In terms of these concepts  one easily works  out 
that  

A p ~ ap ~ Aap 

p',{ p - I  
hi ; P + P  ~ .. .h,. . . , ,  w C , , P , ,  O~.ul ""/~p: o O~gl 

i=1 

+ p ( n - 2 p )  C" + p ( n -  p) I 
n - 2  a~,l...up_, ~ ~p n(n~]- ~ Ra., ...~,~ ) 

X d x  ~` A " ' "  A d x  ~'p (29) 

Using this fo rmula  one should r emember  that for n = 2, 3 C~%a = 0, and for 
n = 2 also C,,/~ - 0. 

Consider  now the (A - •2)% = 0 equations,  K = me~h, in the case of  a 
flat space- t ime described in terms of the Cartesian coordinates:  

g=dt  ~ d t - d x  ~ d x - d y  ~ d y - d z  ~ dz 
$ S S .u 

(30) 

By using (29) with ( x  ~' ) = ( t ,  x,  y,  z } we easily infer that  they amoun t  to 

[ ( 7 ; ]  - o, ~ + o,2. + o~ + ~ -  - o ,  �9 0 ~  z . - . / X p  - -  p = 0  . . . . .  4 (31) 

i.e., precisely to the K l e i n - G o r d o n  equat ions for all 16 of independent  
c o m p o n e n t s  of  a. . . Thus,  (A - x2)% = 0 equat ions with the hyperbol ic  

�9 P 1 �9 �9 " P p  

signature,  n § = 1, n -  = n - 1, indeed generalize the K. G. equat ions for the 
case of  a curved space. 

Al though we described in this section *, J, d, 8, and A as operat ions  
def ined in terms of  char t  componen t s  of  % ~ A e, all these operat ions  
possess an intrinsic geometr ical  meaning  over  the whole M, independent  of  
the choice for the local charts.  
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3. GENERAL PROPERTIES  OF T H E  (d + 8 + K)et= 0 
EQUATIONS 

The ideas of Section 1 have led us to the hypothesis that given a 
Riemannian structure (M, g) it is of interest to consider an element of the 
Grassmann-Cartan algebra a =  ~p'=0% ~ A(M) ,  each of its components 
fulfilling the Kle in-Gordon equation (A - Kz)ap = 0. When submitted to a 
stronger differential condition (d + 6 + K)ct = 0, = (A - K2)ap = 0, it is a 
natural dynamical field-theoretical complex of the bosonic fields. This 
section begins a systematical study of this hypothesis. Its objective is to 
outline the basic structural facts which follow when the "dynamical equa- 
tion" ( d +  8 + x)ct= 0 is postulated, independently from any specific as- 
sumptions about the nature of (M, g). 

The n-dimensional (d + 6 + x)c~ = 0 equations stated more explicitly 
amount to 

AP~dap_l+dctp+l+xcte=O, p = O  . . . . .  n (32) 

(a_  t - 0 -  c%+~), and in terms of the local components- -as  defined in the 
previous sect ion--amount  to the tensorial equations: 

~ p  

to 

(_1)~- '  ( -1)~  +' 
( p - l ) !  a f ~ ' ~ ' - " ~ ' l  + p! %~.. . , : :~ + ~ .  %~..., = O. 

p = 0 . . . . .  n (33) 

If one would like to work in place of Ctp'S with the equivalent objects 
,-- * a,,_p, p = 0 . . . . .  n, then (32) and (33) can be shown to be equivalent 

( 1) -p+X~. , , , - p o .  
aO{p _ 1 + ( - 1 = -- " 1) Oap+ + K&p 0 

and 

/ z _ l ) "  . + 
(p -1)! a t~ '~ .  ,...l 

(_1) ~ ff 
p! 6t~..., w + ~ . & , ~ . . . , = O  

This explicitly exhibits the fact that % ~ &p is not a symmetry of the 
studied equations. 

These differential equations for %, ~,, p = 0 . . . . .  n which involve the 
metric gu~, possess then a simple action principle. Indeed, with ~ ~ M, and 
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(a,/3)e defined by (26), consider a functional of a~,,...~,; p = 0 . . . . .  n and 
g,, defined by 

A,= ~( da+ 3a+ ~a,a)~ (34) 

The so-defined action A, bilinear in a = ~p=Oap--Stated more explicitly-- 
amounts to 

p=O 

= "~ ( doCp_ l q- ~Otp+ l q- KO~p )lOr p d x 1 A  . . .  A d x  n 
p = 0  

=,f~ Ldx 1A ... A dx" (35) 

The second line of (35) provides the explicit definition of A in the chart 
independent language, the third is meant--assuming that the chart {x ~') 
covers ~ - - t o  provide the definition of the Lagrangian L from the fourth 
line, L being understood in the conventional sense. The first line with 
J [a , /3 ]  defined in (24) is the most convenient in showing that A under- 
stood as a functional of a and g, A = A[a, g], when varied with respect to 
a, leads to our dynamical equations (d + 6 + ~)a = 0. 

�9 Indeed, because A is bilinear in a, denoting by h = ~=ohp the 
variation of a, we have 

+ �89 f / t d h  + 8h + Ath, gl (36) 

On the other hand, remembering J [a , /3 ]  = J[ /3,  a] and the crucial prop- 
erty of J ,  (25), we have 

+ d {  ~ (hpA*ap+l-apA*hp+x) } (37) 
p = 0  
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and consequently, applying Gauss-Stokes-Ostrogracki theorem, we have 

A [ a +  h ,g]  = AIa, g ] + f / [ d a +  6a+ xa, hi 

I1 
+ fOepEo(hp= A �9 %+1-  % A * hp+~)+ A[h, g] (38) 

where 0 2  is the boundary of ~ c M. Therefore, if according to the 
standard ideology of the action principles, the first variation of A is 
supposed to vanish for an arbitrary variation of a ( =  h), constrained to 
vanishing on 02,  for ever), 2 ,  it then follows by employing duBois- 
Reymond lemma, that (d + 8 + K)a = 0, ~ (32) equations, or their local 
tensorial form (33). �9 �9 

We should like to observe that because of (27) the two "kinetic" terms 
of our action, i.e., the terms involving d and 8 operations are equivalent 
modulo a surface term. Nevertheless, we have chosen to work with the 
action A in its present form, because it shares with the standard action for 
the Dirac equations one important property: it vanishes along the integral 
variety. 

The local Lagrangian L which corresponds to our action is given 
explicitly in its tensorial form according to 

1( 
n - I +1 ~ ) 

+ Z : ~  + o~"~'", (39) p =0 Pf Oilaj ""P.pO FO(uq...P.p 
�9 p = O  

Now, our action A is invariant with respect to the general coordinate 
transformations. Therefore, it follows according to the well-known theorem, 
that, modulo our field equations (d + 6 + K)a = 0, the symmetric tensor 

7 c T T ~ , , , = 2 + A  (40) 

is "covariantly conservative": 

T.,:"=O (41) 

In the case of the real structure (M,g)  with n = 4  and the signature 
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(+ ,  , , - ) ,  q['~,~ has the interpretation of the energy-momentum tensor. 
From (40) it can be worked out that this tensor amounts to 

T"~=={ ~ ( - 1 )  ' -1  
P ~]. ( p : 1-)! P ~["I "''"p'" l'(, I1 ] 

,,-1 __l)p+t } 

p=l 

1( ~g~,~ k ( - 1 ) P - 1  

(-1) ,+1 } 
- :P a ~ ' " ' " p  ( 4 2 )  

p=O P! %~ '~'P 

[We recall that [... ] denotes antisymmetrization, ( . . .)  the symmetrization of 
a set of indices; an index which does not participate in these operations, like 
p in (42), is denoted 10b] 

The symmetric tensor T.,, =T(.,,) defined above, bilinear in fields 
%,..... and linear in their derivatives, which does not contain any term 
proportional to ~, is somewhat analogous to the energy-momentum tensor 
for the Dirac spinor ++ 7<.V.)+. With (42) understood as the definition of 
T.., it is a nice exercise in the traditional tensor calculus to show that, 
assumed (33) equations, T.. :~ = 0 indeed follows. The Dirac equations imply 
however also the covariant conservation of the probability current, j:~ = 0, 
f '  ,= q,+ 7~b being algebraically constructed in terms of q,, meaning by 7" 
the "r matrices in a curved space-time. The question arises: does an 
analogous covariant conservation law exist for the considered bosonic 
structure with (d + 8 + K) = a = O? It turns out that the answer is positive: 
define a tensor bilinear in the components of a = ~p=O% and algebraically 
constructed from these: 

P~,,,=2"~' ( - a ) P ( ~  "'''" +~" ' " ' " .a . ,  ~.~,.) 
p=O P! ~%Otgl ""gPv "'" 

tt +g.~ E (--1)P 
p=O P! ag'~'P%'"" (43) 

Then one can show that modulo our (33) equations 

= 0 (44 )  
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�9 Perhaps the simplest manner of proving this, consists in constructing 
(33) equations with a ~'t~'p#, and subtracting from the so-derived equality 
the same equations for p --+ p + 1, with /x I .../zp+ 1 -+/zx .../Zp/X constructed 
with a ~', - ~'p, so that the K terms cancel out. By taking then the sum )Z~= 0 of 
the so-obtained equations with the free index /z, one easily sees that it 
indeed amounts to P~,,,:~ = 0, with P~,,, defined in (43). �9 �9 

Further on, we shall see that in the case of a real (M,g)  with 
hyperbolic signature P, is positive definite parallelling the corresponding 
property of the temporal component of the Dirac current. 

There exist still other covariant conservation laws which accompany 
our dynamical equations ( d + 6  + K)a=0 .  In particular, our equations 
imply the Klein-Gordon equations ( A -  ~2)ap = O, p = 0  . . . . .  n each of 
these possessing an autonomous action principle with the corresponding 
action integral given by 

1 Ap : Ap[ofpl := ~ f * { dOfpldOfp -t- ~O~pl~Ofp - K2OfplOfp } (45) 

with .~ c M having the boundary 0N.  �9 Indeed, by employing the general 
rule: 

(46) 

valid for any %, flp+l [this is an equivalent form of (25)], one easily sees 
that 

+ fo ( h p A * d a p - 6 a p A * h p ) + A p [ h ? l  (47) 

Therefore, with "small" hp (understood as variation of %) vanishing on 
0~ ,  the vanishing of the first variation of Ap for every ~ implies ( A -  
x2 )ap = O. �9 �9 

But Ap is an invariant with respect to arbitrary coordinate transforma- 
tions. Therefore all n of the symmetric tensors: 

~/TT(p)~: = SAp 8g~,,,, p = 0 ..... n (48) 
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are covariantly conservative 

T<p)~. ;" = 0 (49) 

modulo (A - x2)% = 0 equations. 
It is perhaps of interest to notice that the action integral (45) with the 

~Olpl6ap term miss ing ,  

, 1 f, hp ,= -~ { dO~p_ldOlp - g-OlpjO~p } (50) 

varied with respect to ap leads to 

( ~d -- K2 )O~p = O ( 5 ] )  

If K is v~ 0, by acting on this equation with 6 one infers that 6ap = 0, and 
consequently (51) is equivalent to 

(A -- K2)Otp = 0, (~0~p = 0 (52)  

Note that the dynamical scheme described above amounts to an invariant 
generalization for the case of an arbitrary (M, g) and ap with p arbitrary, 
of the Proca treatment of a massive vector meson with the Lorentz condi- 
tion. 

4. T H E  (d + 8 + K)a=  0 EQUATIONS:  SPECIAL CASES AND 
THEIR INTERPRETATION 

Consider the studied differential structure in the case of (M, g) real 
with the hyperbolic signature for the "realistic" subcase of n = 4, signature 
( + ,  , , ), and parallely, for the sub case of n = 2 ,  signature ( + , - ) ,  
which can be considered as a model of the realistic situation) 

For both cases n = 4, 2 according to (19) and (23) we have 

* * Ap = ~ A p, p odd, 8 = * d * (53) 
"~ - A p, p even, 

3A suggestion by Marcos Moshinsky to investigate this simplest possible model which admits a 
dynamical interpretation is gratefully appreciated. 
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and the (14) equations amount correspondingly to 

0 +  3 a  1 + Kc~ o = 0 

n=2- - - ,  da  o + 3 a  2+~r x = 0 ,  

dcq + 0 + xe~ 2 = 0 

0 + 6 a  x + K a  o = 0  

I da  o + 3or 2 + xor 1 = 0 

n = 4 - - ,  ~ d a  x + 3 a  3 + s a  z = 0 

dot  + 3 a  4 + Kot 3 = 0 

d a  3 + 0 + x a  4 = 0 

(54) 

If we replace for n = 2 ,  ct 2 b y  - . 6 0  , and f o r n = 4 ,  a4bY - . 6 0  and a 3 
by * 6~, the forms with . . . . .  above corresponding to pseudotensors, then our 
equations assume the equivalent form of 

r/ = 2 ---~ 

3a x + Ka o = 0 

da  o + * d6 o + ~r t = 0,  

�9 d a  I + x 6 0  = 0 

3 a  I + x a  o = 0 

dot o + 3or 2 + got 1 = 0 

n = 4 --* ~ d a  l + * d &  z + x a  z = 0  

] d6 o + * d a  2 + tr = 0 

I a6! + K6 o = 0 

(55) 

Notice that because * commutes with A [this is true for an arbitrary (M, g) 
as a consequence of (55)] 

(~176 1 n = 2 ~ ( A - - K  2) oq = 0 .  

 ao! 
( o~ o 

o~ 1 

n = 4 ~ ( A - a :  2) a2 : 0  (56) 

In terms of chart components the objects involved in the present 
statement of our equations amount of course to 

(~176 1  ao/ 
o~#j, 

6o 

(57) 
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Denote now by D 2, D, 1 the blocks of equations (55) for n = 2,4. Then, if 
K 4: 0, there hold interesting equivalences: 

rt = 2 ---> 

( a - K 2 ) a l = 0  

a 0 + i6 o,= - ~-1(3 + i *  d ) a  1 
r D 2  *:, 

( a -  K2)(~o + iao) = 0 

ar  - ~ -  1 ( d a  ~ + . d& ~ ) 

(58) 

and 

n = 4 ~ ao + i&o'= - K-13(a 1+ i& 1)? 

a2 '= - K - l ( d a l  + * d a l ) )  

t(a-•2)a2 = o  

D a ~ ,  q ( A  -- KR)(ot0 + i60)  = 0 

~a,  + i&l = - - K - ' [ d ( a  0 + i 6 0 ) + ( 3  + i * d ) a z ]  

(59) 

By " ,=" we mean here, of course, "equal from definition." The definitions 
in (58) and (59) correspond directly to some of D 2 and D 4 equations; the 
point is that these definitions used in the postulated simultaneously 
Kle in-Gordon  equations, by employing the properties of d, 8, and *, are 
exactly sufficient to show that K. G. equations are equivalent to the 
"missing" equations of D 2 and D 4 correspondingly. 

On the first sight, the equivalences established above seem to "trivial- 
ize" the studied dynamical structure: D 4 is just equivalent to the usual 
theory of a complex vector boson, cq + i~ l = (eta, + i&~,) dx  ~' submitted to 
the Kle in-Gordon  equation, brought to the shape of the first differential 
order equations, by appropriate definitions for some combinations of its 
first derivatives. Equivalently, it can be just considered as the usual theory 
of the real vector particles of spins 1 + and 1 -, endowed with the same mass. 
However, D 4 understood as equivalent to the right-hand side block in (59) 
can be interpreted in a dual manner: it corresponds to the usual theory of a 
complex scalar boson a 0 + i6 o -equ iva len t ly  real scalar bosons of spins 0 + 
and 0 - - - a n d  the real boson of spin 1, a~,., which thus corresponds to the 
representation D(1,0)•  D(0,1), all these bosons being endowed with the 
same mass. We argue that the existence of this dual "usual"  interpretation 
of D 4, after all, exhibits the nontrivial nature of our differential structure: 
bosons with spin 1 -+ (representations D ( 1 / 2 , 1 / 2 )  •  are equivalent  to 
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bosons 0 • (representations D(0,0)•  and a D(1,0)X D(0,1) boson, spin 
s = 1. Question arises: which of the dual interpretations ought to be as- 
sumed as physically valid? A reasonable answer appears to be that simulta- 
neously both are valid, with the "middle of the road" first differential order 
equations D 4 understood as the dynamical equations. It still may appear 
strange that a theory of spin-1 • particles results equivalent to the theory of 
spin 1, representation D(1,0)•  particles and 0 • particles. At this 
point, it can be observed that in the attempts to construct a wave equation 
for bosons, usually spin-1 and spin-0 particles appear simultaneously, like, 
e.g., within the Duff in-Kemmer theory. Moreover, notice that if we special- 
ize the equivalences (59) for the case of the generalized Proca scheme 
discussed at the end of the previous section with the "Lorentz conditions" 
imposed for the vector particles, then these equivalences reduce to 

r / =  4 --~ 

0r 2 

6(a1+ ial) ~ ~ da l  + * da l  + Ket2 

,= _ ~ - l (  d a l  + d61) * d a  2 + K61 

/ ( a  - K~)a2 = 0 
\ 

a I + i6:1 -'= - x - l ( 3  + i * d ) a  2 
(60) 

the left and right block--as well as the "middle of the road" equations--in- 
volving only the objects with the spin s = 1 [although belonging to different 
representations: the "Lorentz condition" 8(a~ + i61) --- 0 eliminates the 
"longitudinal" scalar particles a 0 and 60]. 

The comment above valid for n = 4 certainly reinforces the well-known 
virtues (positive definiteness of energy, etc.) of the Proca scheme with its 
Lorentz condition. 

Now, the equivalence (58) for the case n = 2 has a similar interpreta- 
tion: a complex "scalar particle" a o + i~t 0, submitted to the Klein-Gordon 
equation turns out to be equivalent--in the sense of the usual theory-- to  a 
real "vector particle." Here no trick "c~ la Proca" can assure the same 
"spin" of the left and right blocks of (58). For this reason, further on, 
developing the interpretation of (d + 8 + ~)a = 0 in various cases, we shall 
not try prematurely to imitate the Proca scheme for n = 4, (equivalent in 
terms of original %'s  to the assumption that a 0 = 0 = a4, ~ 8 a  1 = 0 = d a  3, 

via the D 4 equations with ~ ~ 0). Notice, however, that our general action 
(35) specialized for the case: n = 4, signature ( + ,  , , - ) - - w i t h  (53) valid 
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- - i f  still constrained, "b y  decree," by the condition o 0 = 0 = a4, amounts to 

A " m ~ l f  *{ (~02-Fl~Ol) /O 1 -t-(do/1 --},-{~o 3 -,Fic02)/o 2 -k-(do 2 + KO3)JO3 } 

(61) 

and with o 3 = * &~ it reduces to 

1 f .  {(8o 2 + Kal)ja 1 + ( d o ,  + * d& 1 + xa2)Ja 2 - ( *  do ,  + x&1)J81} ,'1'= 5 

(62) 

[Showing this, we used the identity valid under the present assumptions, 
* a l J  * f l l  = - a l J f l l ,  which follows from (21).] This action when varied with 
respect to a~,o2,~ 1 is easily seen to lead to the "middle of the road" 
equations from (60) and vanishes along the integral variety of these equa- 
tions. Then, acting with 8 on the first and the third of these equations, we 
easily infer that if x 4= 0, they imply the "Lorentz condition": 

8 (a  I + i~ 1 ) = 0 (63) 

Obviously, this generalizes the "Proca process" discussed at the end of the 
previous section, applicable for the second-order differential equations 
( A -  K2)a, = 0, to the case of our first-order differential equations with 
n = 4 a n d s i g n a t u r e ( + ,  , , ). 

It should be perhaps observed at this point that the results of the first 
part of this section were technically obtained by using the algebraic proper- 
ties of *, J, d, and & To demonstrate them working in terms of local chart 
components would involve some rather messy.computations. 

In conventional physical theories treating a particle of the given spin s 
one usually commits the field which corresponds to that particle to be the 
carrier of a f i x e d  representation D (  k ,  l ) ,  k + 1 = s,  having thus in principle 
2s + 1 options for this fixed choice. Equivalences (60) indicate that there are 
possible dynamical theories where although the spin is fixed, the different 
representations compatible with it are treated on equal footing. [In our 
specific case D ( 1 / 2 , 1 / 2 )  • real fields are equivalently described by a real 
D(1, O) • D (0,1) field.] 

In the second part of this section we would like to study (d  + ~ + K)o -- 0 
equation in the n-dimensional hyperbolic case understood as the "evolution 
equation." We will do so assuming strongly that V~ = V 1 • V,_ l, Mn = ~ • 
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M,,_ 1 and 

g .  = g l  - g . -  1. g t  = d t  ~ d t .  g , , -  t = g~b dx"  ~ dx  b 
S S 

a, b . . . .  = 1 . . . . .  n - 1, O,g.b = O, gob positive definite (64) 

This is of course a much stronger assumption than the existence of a 
temporal killing vector 0 t - t "  for a hyperbolic V,, of signature 
( + ,  - 1 . . . . .  - 1). With V,, = V t • V._ 1, t, is covariantly constant, t~,: ,, = 0. 
On the other hand, if V t • V._ t is flat, then V._ 1 is flat, and there exist the 
privileged Cartesian coordinates (x"}  such that g,~b = 6~h- Thus, studying 
the case of V 1 • V,,_ 1 we implicitly also cover the physically interesting case 
of flat g .  with the "Poincar6 group" ..~"(~)O(1. n - 1). 

With Vj • V._I described in chart {x" } = {t, x" ) the independent 
components  of %, . . .u :  p = 0  . . . . .  n, amount to the independent compo- 
nents of 

%~.. .p and %, .... / ,  p = 0  . . . . .  n - 1  (65) 

while these objects can be interpreted as the-skew tensors in the sense of 
V,,_ 1, depending parametr ica l ly  on t. We observe then that by specializing 
(33) equations for t~1...l~? ~ a l . . .  ap, and then with p ~ p +1  for 
# 1 . . .  ~tp+~ ~ a~ . . .  apt  under the present assumptions concerning g,,,, after 
some work, one arrives at the conclusion that they are equivalent to 

O t O ~ a  I . . .  a p t  :h + ( -  1)PKa., =0  + POt[a1 ...ap_l,ap] -- ~al...aph ...ap 

:h + ( - 1 ) P K a . ,  = 0  (66) OtOtal . . .%-- Pa[al ...ap_dtl.ap] + O~al...apbt ...apt 

The covariant derivatives " ( . . . ) : h "  are meant here in the sense of the 
positive definite metric g.h and of course these operations "ignore" the 
index t of % . ,. The alternating signs in the first and second of (66) 

�9 I " "  p 

equauons suggest that they can be spelled out as a single complex equation. 
Indeed, define a complex V,,_ t tensor--parametr ical ly  dependent on t - -  

ft., ..up '= iPa., . . .op + iP+ xa., . . a / ,  p = 0 . . . . .  n - 1 (67) 

which encodes conveniently for our purposes all 2n of the independent 
components  of %,~. . , :  p = 0 . . . . .  n. Then, multiplying (66) equations by 
i p+I and i p and adding we infer that they are equivalent to the complex 
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evolution equation 

;h = 0, p = 0 .  n - 1  [ - . . . .  , h  . . . .  

(68) 

These equations can be now stated invariantly with respect to the 
V,,_ ~ = (M,,_ 1, g , -  1) structure. Indeed, define the complex valued p forms: 

1 
/3,,=-57/3~,...%dxa'A . . .  Adx",,  p = 0  . . . . .  n - 1  (69) 
r ~ 

which can be understood as belonging to the complexified A(M,,_I),  
/3 = a~,,-lt~ ~ A(M,, ), endowed with the operations (.~g, + ,  A ) depend- ~ = 0r. 'p - 1 

ing parametrically on the real t. Notice that from the point of view of 
V,, = V 1 • V,,_ t with the distinguished dt, these forms can be understood as 
concisely defined by 

/3p := ( - - i )  p dtJ(ap A dt + iap+l) 

**a ,=Re{( - i )P[ f lp  + flp_l A dt] } (70) 

Assume now the convention that the operations *, 3, d . . . .  defined in 
Section 2 all refer to V. = V 1 • V,,_ 1 structure, while these operations when 
understood in the sense of Vn_ 1 = (M,,_ 1, gn-1) with its positive definite 
metric are to be denoted * ' ,H ' ,  d ' ,  . . . .  Then (68) contracted with 
(1/p!)dx ~' A . . .  A dx~p assumes the V,_ 1 invariant form 

[(-1)Pot-iK]flp+d'~p_l+a'~p+,=O, p = 0  . . . . .  n - 1  (71) 

Using this invariant complex form of the evolution equations one can 
prove that 

n - I  
0, 

p = 0  

[ n-1 ) 
= 0 (72) 

This amounts to a conservation law valid in arbitrary coordinates for 

gn - 1, 

Ot(Vr-f o)+ Oa(qr-f j~)=O (73) 
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where 

,, - 1 ,,~I 1 - 

p=0  p=0  

n - 1 

- Ja d x a = =  E flp'l~p+1+C'C'. 
p=O 

= - . / ' . =  E ~./3 "%B~, . . . , , ,+C.C.  (74) 
p=0  

Notice that under present assumptions l/r) - = V/7 ', 1/7 being defined in 
(36). In the formulas above indices are manipulated by the positive definite 
metric gob. The conservation law (72) written in the form of f':~, = 0. 
J " =  (P. J'") can be then according to the general results of the previous 
section seen as a consequence of the covariant P..:" = 0 with P.. defined in 
(43): f '  coincides with j "  ,= t"P2. where t" is the cotangent form of the 
covariantly constant (t~,; ,, = 0) Killing vector 0,. Observe that in terms of the 
objects (65) equivalent to %,...~,/ p = 0 . . . . .  n, O and j .  are explicitly given 
as 

p = , l~l  l ( o~a,...aptOia, aP t + O~al ....  ,O~a, ... at,) >j 0 
p = 0 F  "'" 

(75) 

. . . .  

p=O 

the "spatial" indices being manipulated by the positive definite gab- 
We observe now that in the studied case of V,, = V 1 x V,,_ 1, with the 

" t ime"  t distinguished and "frozen" (i.e., free only modulo t--* t + t 0, 
t o = const), A(M, , )=  A(~? x M._x) has the natural structure of a Hilbert 

t l  space over ~ .  Indeed, working with the local components of oe = ep=oa p 
A(M.)  described by V._ t tensorial objects (65) dependent parametrically 
on t. we can define the real symmetric scalar product on A(M,,) as given by 

r  dx' . . .  
n - 1 

a{ X ~ a"'"p(t')cd~,...,,flt") (76) 
p=0  

IQ  I . . .  tJpl" t t /  , ' l  (t)% o,,,,(t)} 
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indices being raised by the positive definite gob. This construction is 
invariant from the point of view of V._x: indeed, (70), equivalently (67), 
establish clearly an isomorphism A(M,,) ~ a = a( t)  ~, 13 ~ complexified 
A(M,,_I), and with a'(t')r a " ( t " ) ~ B " ,  (76) can be equivalently 
stated as 

<a' ( t ' ) ,a" ( t" )>=Re(~7,#  '') 

- L 
(#, #,,)= , 

n I 

n - 1 _ _  

p = O  

= VI~  d x  A - - -  A 
n -  1 p 0 " ~ "  a 1 , . .  t2 p 

(77) 

Notice that with this interpretation, (a ' ( t ' ) ,  a " ( t " ) )  = (a"(t"), a'(t')) 
and <a(t), c~(t)) = 0 .~ a(t) = 0, are self-evident properties of our ( , ) .  The 
convergence of the integrals with M n_l compact is trivial, and when, e.g., 
Mn_ 1 = ~ " - ~  to assure it, we simply constrain a~,....,(t) and a~,...~,t(t) 
V,_,_ x tensors to be "square integrable" (L z scalar product) demanding that 
( # ,  # )  < oo. 4 ) 

A general remark: the temporal evolution of states It)" must allow 
their linear superposition for different times, i.e., with z', z " ~  ~, z'lt' ) + 
z"lt">, if the derivative Otlt ) is supposed to make sense; but independently 
from the specific choice for the field ~,  z'lt'> + z"lt"> is then not to be 
interpreted as a state corresponding to a definite time t! On the other hand, 
different states at the same t, It)' canonically understood as " the  maximum 
information about the physical system at t"[Dirac, 1957], when superposed, 
must be understood as a state at t, this superposition process constrained to 

~It is very tempting to consider complexified A(M,,_I) ,  with / 3 ~ A ( M , , _ I )  depending 
parametrically on t, as a natural Hilbert space structure over W, with the scalar product 
(~ ' , / 3 " ) :  this would open doors to the standard quantum mechanical interpretation of the 
studied dynamical structure. We resist this temptation, because assumed this interpretation the 
superposition of  "states" with z', z"  ~ ~', /3 = z~8'+ z"/3", is not consistent with the V,, 
invariant nature of the isomorphism A (M,,) ~ or(t) ,:,/3 ~ complexified A ( M,,_ 1 ): assuming 
such a superposition of the components of o~(t) it would lead to the general linear combina- 
tions of oc~,t ... ,~p(t'), a,',', ... ,~e(t") with a,q ... ,~pt,(t'), and a~'~ ,~W,,(t"). Hence, even with /3's 
taken at the equal times, t = t = t" ,  a ( t )  read off from a(ti": : ' /3 = z B '  + z"/3" according to 
(67) would not lead in general to the V,, covariant objects aj,~ ...up' P = 0 . . . . .  n. With z', z"  
constrained to ~ only in the main text. this difficulty disappears. 
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be compatible with the covariance requirements of the theory. The construc- 
tion outlined in (76) permits us to interpret consistently o~(t)r as the 
"evolutionary states" from a Hilbert space over ,~', in the sense discussed 
above. 

From the point of view of our ( , )  product, the notion of the complex/3 
( r a(t)) somewhat loses its structural naturality, remaining only a conveni- 
ent technical device in exhibiting the simple nature of the (d + 6 + x)a = 0 
equation for a E A( M n) interpreted as the evolution equation for the case of 
a hyperbolic V~ x V,_ 1. 

Now, assumed our evolution equation 

O , ( a ( t ) , a ( t ) )  = O, Re(~, /3)  

f ~  r 1 d x  n -  1 =Or P f 7  dx A . . .  A 
Mn I 

r 

= [via (73)] = f0M,,_, . . . .  0 (78) 

if either M,, i is compact ( OM,,_ 1 = 0) or a is square integrable, (a ,  a) < oo. 
Therefore, our evolution equation is compatible with the normalization 
condition 

( a ( t ) ,  a ( t ) )  =1 (79) 

assumed which, O >/0 can be interpreted as the probability of localizing the 
dynamical system in the invariant volume * '.1 = ~ l ~ ' d x  t A . - -  A d x " - x  

All this is consistent for the case of a hyperbolic V,, = V~ • V,_t with 
the time t understood as "frozen," and not allowed to be mixed up with 
coordinates of Mn_ ~. The question arises whether the proposed interpreta- 
tion still applies when V t • V,,_t is flat and the metric given in cartesian 
coordinates 

g,, = dt ~ d t -  6,h dx  1 ~ dx h= 71~,, dx ~' ~ dx  ~ (80) 
S S S 

possesses the Poincar6 group of symmetries, with the Lorentz transforma- 
tions which mix t with x" being allowed. Of course, in a fixed Lorentz 
frame (t "frozen"), the interpretation applies without changes. Because 
under a general Poincar6 transformation x ~' = (t, x ~) ~ x ~''= (t', xU'), with 
%,, .~,p transforming tensorially to %,i...4,' all objects involved in our 
construction are uniquely defined and fulfill the same form invariant equa- 
tions, we can argue that this is precisely enough in order to impose 
again--from the point of view of the primed frame--the same probabilistic 
interpretation as before, but now with the "t ime slice" t ' =  const dis- 
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tinguished in place of the previous t. A moment of reflection leads to 
conclusion that the stand assumed above is consistent. All that is needed is a 
unique prescription how the observers at any time slice perceive probabilis- 
tically the dynamics under study. This coincides essentially with the argu- 
ment which allows the consistent probabilistic interpretation of the special 
relativistic Dirac equations (Dirac, 1957). However, while the Dirac proba- 
bility current f '  = ~+ Y~'4' is a 4-vector and the normalization condition for 
the states [~) can be postulated in the form independent  from the choice for 
a time slice, 

f j ~  d3o ~ = 1 

a being a spacelike surface, in our case the situation is different. The 
probability density O coincides (in the studied flat case) with the component 
P.  >t 0 of the tensor P,. from (43) which satisfies the conservation law: 

P~,.'" = 0 (81) 

Consequently, assuming a( t )  square integrable ( f v .  ~Pt, dx~ A . . .  A d x " - l  
< oo) we have 

N.= f P;,tdxl A ' ' '  A dx '~- t - -*  c 3 , N ~ , = O ~  N ~ = c o n s t ,  (82) 
M .  _ 1 

and under the Poincar6 group f g , _ , p d x  ~ A . . .  A d x  " - l  transforms like N I 
component of the constant vector N w Hence the normalization condition 
(79) is not invafiant with respect to the different choices for the time slices. 
Although this causes that the probability densities p and p' related to time 
slicings of Poincar6 equivalent systems of reference (t, x ~) and ( t ' ,  x " ' ) ,  do 
not transform like a temporal component of a V,, vector, nevertheless the 
probabilistic interpretation remains consistent. 

5. FLAT HYPERBOLIC (M,g) :  SOME EXPLICIT FORMS OF 
T H E  EQUATIONS FOR n = 2 , 3 , 4  

If hyperbolic V~ x V,,_ ~ is flat, with the chart of M._ ~ so arranged that 
g.b = 6oh, then (d + 6 + •)a = 0 stated in the complex form (68). reduce to 
the simple 

[ 0, - ( - 1)PiK] rio,... % -  Pfllo, . . . .  , - , .  %1 - rio, ... o,h.b = O, 

p = O  . . . . .  n - 1  (83) 
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the relation between a. . , p = 0 . . . . .  n and ft,. - 0 . . . . .  n - 1 being 
defined by (67). Although"Pit is not  self-evident .... P' p - from the structure of (83) 
equations, these being equivalent according to (33) to 

( _ i ) ~ - '  ( - i )  ~+I 

( p  1)! %"~ 'p -"~ 'p l '~  . p +  1r = 0 ,  _ p !  a~q . . .~pp ~.. a~ ... ~, 

p = 0  . . . . .  n (84) 

describe a Poincar# invariant structure. 
Equat ions (83) constitute a very convenient  tool if one wishes to exhibit 

the evolution process implicit in our  basic (d  + 8 + ~r = 0, in a form which 
imitates the Schrt~dinger (or Dirac) wave equations: 

( i h a , -  H ) q ,  = 0 (85) 

This will be separately discussed for the cases of n = 2, 3, 4. In doing so, 
we assume the s tandard Pauli notat ion for the basis of complex 2 •  
matrices: 

i( ;) (o -o) (o 
For  n = 2 ~ n - 1 = 1 f l ' s  have the only nontrivial components :  

flo = ao + ia ,  (87) 
fll = ial  - aat - ial - 6% 

the real basic fields unders tood as a o, a ~ = ( a t ,  a l )  and a ~ , ~ = - e . , , &  o 

( a  2 = - * &0!). In terms of  f l ' s  (83) equations reduce to 

( a , - i K ) f l  o -  a l f l , =o ,  (a,+ix)fl,- 0,/30=0 (88) 

and therefore, remembering K = m c / h  and defining a column with the 
complex entries: 

n = 2 ~ q ~ =  fll 

our equat ions amount  to (85) with 

n = 2 --* H := { a t ( -  i h O l ) +  rnco 3 } (90) 
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Notice that the conservative O is given here by 

n = 2--+ P = a02 + a, 2 + a2 + &o 2 

9 2 1  

(91) 

In the case of n = 3, a similar argument applies: not entering into 
details, we observe only that here there are only four components of 
complex 13's: fl0, fl~, fl~b =' %b/~0, a, b . . . .  =1 ,2  and arranging these inde- 
pendent complex components in the form of a column 

#2 

o 

one easily finds that (83) is equivalent to (85) with 

n = 3 ~ H  

(92) 

o, 0 )}  
m c  

0 -- 0 3 

(93) 

Now, in the most interesting "realistic" case of n = 4 the nontrivial 
components of complex fl 's  amount to 

flo =, qo ( r = a o + icq 

flo =' Eo ,,~ ~ Eo = iao - % ,  

,8~b =: %bc/~c / t i '  a = - (1 /2 )e , ,bc  ( abe + iabc ,)  = --(1/2)e~b~,abc - - i f , ,  

&b~ =- ~ r  I,r = ( 1 / 3 ! ) q b ~ (  - i,~o~,. + ~ , )  = - ia ,  + ao 

(94) 

The real bosonic fields involved in this construction are of course a o, 
Otg = ( a t ,  an , ) ,  a~t u = a [ .~ l  = ( a . ,  t, a,, , , ,) ,  6tt, = ( 6t t, 6t . , )  a n d  &o [a3  = * ~  ~ 

= - * a o ! ] .  
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It is then easily seen that (83) equations worked out in terms of the 
eight (~, E, ,  B~, q0) are equivalent to 

i O , -  iK)ep- O,E, = 0  

n = 4 --* Ot + iK)Ea - Oaep - eah"ObB" = 0 
O, iK)B a -  Oa6 p + e~b,.OhE ,. 0 

O, + ix)6p - O,,B,, = 0 

(95) 

These equations duly imply that each component of (r . . . .  ) is annulled by 
the operator (A - K 2) = ( -  0t z + 0,0~ - K2). This (complex) differential 
structure is very close to the (complex) Maxwell equations--which has 
motivated assumed notation. Indeed, (95) with ~ = 0 and r = const, ~ - -  
const, written in the elementary vectorial notation amount to 

0 , E -  rotB = 0, 0 tB+ r o t e  = 0 (96) 

d i v e  = 0, divB = 0 

Notice, however, that according to the identifications in (94), (E, ,  Bo) do 
not transform under the Poincar6 group like components of f~,, = fI~,,,l ~ r 

Of course, arranging (cp . . . .  ) in the form of a column with 8 complex 
entries, q,, the equations (95) can be easily written in the form of (85), H 
being constructed from some 8 • 8 complex matrices, parallelly to the cases 
n = 2,3. But in the considered case of n = 4 we can do better than that. 
Encode the 16 independent (real components of %,L...~,p' P = 0 . . . . .  4) in the 
form of the complex 2 • 2 matrices, 

Q,=  cp, 

- r  cp 

Then, (95) equations--together 
seen equivalent to 

'9 Qo = 
Eo, (97) 

- bo, e \  

with their complex conjugates--are easily 

[ a t -  K(io3) ] Q -  O~Q~ = 0 

[ O/+ K(i%)] Q~ - O~Q + (io z )%he ObQ,, = 0 (98) 

This opens doors for the quaternionic interpretation of the structure 
( d + 6 + • ) a = O - - w i t h t h e r e a l f l a t V 4 = ( M , g ) o f s i g n a t u r e ( + ,  , , ). 
Indeed, identify the basis of the quaternion algebra [see (86)] with 1 and 

i ~= - io 1, j ' =  io 2, k '= io 3 (99) 
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Then, as is well known, there are valid the crucial properties i 2 = j2 = k 2 = 
- 1 ,  ij = -  j i  = k (and cyclically, with respect to i, j ,  k), while under the 
conjugation of quaternions, i, j ,  and k change sign, 1 remaining "real." 
This interpretation assumed, the (97) formulas can be understood as 

Q = Re(q0).l + Im(~P).i  + Re(~0).j + 1 , , ( cp ) . k  

= a o - 1 -  a , . J +  ao .J  + a , . k  

O~ = Re( Ea). l  + I , , ( B , , ) . j  + Re(L).j  + I m ( & ) ' k  

= -- aat ' l  -- &a'J  -- �89 + % . k  

(100) 

[Of course, representing the quaternions (Q,  Qa)  in terms of the real 
components of a o, %,, %,~, 6t~,, and &o, (94) was used.] Define now 4 •  
matrices with the quaternionic entries 

h 1 : ~  

0 1 
1 0 

0 
0 j 

0 

J 
0 

A 2 ~ 

1 0 
0 

0 - j  

1 0 
o j 

A 3 :-~- 

0 0 j 

- J  0 
0 

B ,= 

k 
0 

0 
- k  

- k  0 
0 - k  

(101) 

1 0 0 
0 1 

id := 
1 0 

0 0 1 

These matrices are endowed with the properties that (i) the four (Ao, B) 
anticommute, (ii) A~ =A~ 2 = A ]  = i d  = - B  2, and (iii) the A~'s are 
Hermitian with respect to " t "  operation understood as simultaneous, trans- 
position of matrices and the conjugation of quaternions, while B is anti- 
Hermitian. 
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Employing these concepts and the notions of 

'~"= (-Q, Q1, Q2, Q3 ) (102) 

we can rewrite now our evolution equations (98) as 

( a , -  ~ ) ~  =0  ~ ~ + ( ~ , -  ~ + )  = 0 (103) 

where 

(104)  

From our equations stated in this form it follows at once 

0,(+++)+ G++&4~ = 0 (105) 

which with ~p+~b = id.o provides an alternative proof of the conservation 
law for 0 >/0, instrumental for the probabilistic interpretation. Notice also 
that in the case of the considered four-dimensional flat (M, g) of signature 
( + ,  , , ), 0 expressed in terms of components of the real bosonic fields 

v2 + 6~61 + + (1/2) (106) 0 = ~0 ~ + ao ~ + ~,~ + ~o~o + ~, ~o,~o, ~ob~oh 

amounts just to the sum of squares of all independent components of 
ct = ~g ct p. 

Now, from a purely algebraic point of view (103) and (104) if pos- 
tulated a priori, with anticommuting Aa's and B, Aa's Hermitian and B 
anti-Hermitian, can be interpreted as a specific realization of the Dirac idea 
of executing the root 0 t = (0a0~ - K 2 )  1 / 2  = A~O~ + Bx in terms of 4 x 4  
matrices. Realizing these matrices with complex entries one arrives at the 
standard Dirac equations for a fermionic particle of s = 1/2. Realizing the 
matrices with quaternionic entries as given in (101), one arrives at our 
scheme whose Poincar6 group invariance is assured when the quaternionic 
components of q~ are constructed from the components of the real multiplet 
of the bosonic fields (a 0, %, 6~,, 6o) according to the second lines of (100). 
The formal argument outlined above certainly supports our hypothesis that 
a =  ~ap  submitted to ( d + 3 + K ) a = O  deserves the rank of a natural 
multiplet of the bosonic dynamical fields endowed with the same mass. 
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It should be observed, however, that from the point of view of results 
(and their interpretation) of Sections 3 and 4, the material of the present 
section is not very essential and can be viewed as a "bagatel le" only. 
Altogether, it amounts only to a study of the - -a l ready  known to be relevant 
- - invar ian t  evolution equation (d + ~ + K)a = 0 in terms of convenient 
linear combinations of components  of a. . , which allow for the "h la 

/z. I . . .  ~ p  

Dirac" interpretation of the evolution process, s 

6. C O N C L U D I N G  REMARKS 

This paper is meant as a preliminary report only on the basic implica- 
tions of the general hypotheses outlined in the Introduction. We have seen 
that (d + 6 + K)a = 0 equations for n = 4, signature ( + ,  , , - )  constitute 
a rich, and natural, dynamical structure. The structure "pe r  se," at least in 
case V 4 = V t • V 3, allows a natural probabilistic interpretation. This inter- 
pretation although "unor thodox"  from the point of view of the standard 
quantum mechanics, relies on the existence of P~,, algebraically constructed 
from the dynamical fields which fulfills P~,,;" = 0, and, oddly enough, fulfills 
exactly the minimal requirements necessary for a = �9 ap to be understood 
as a quantum mechanical set of states [see Mielnik (1969), particularly the 
comments  on p. 41).] Although in the body of this paper  the second 
quantization aspect of the structure (d  + 6 + K)a = 0 has not been studied, 
it is perhaps of interest to mention that the (flat) model case of n = 2, 
signature ( + , - ) ,  chart x ~' - - ( t ,  x), with the Lagrangian from (39), when 
submitted to the routine second quantization for the bosonic fields--i.e., 
with commutators  up to Dirac's 6 ' s - - d o e s  behave consistently. With the 
Hamiltonian operator H = f dx Ttt, Tt, being component  of T~, from (42), 
the (d  + 8 + x )a  = 0 equations ho ld- -unders tood  as the Heisenberg equa- 
tions, but diagonalized H has indefinite sign. The canonical second quanti- 
zation of the "realistic" flat case with signature ( + ,  , , ) conditions (h 
la Proca) a01 ) =  0, fi01 ) =  0 are likely to lead to the positive definite 
energy. 

We confined this paper  to a study of the free field a = ~ %  only. It  is 
clear, however, that the possible physical relevance of its ideas ought to be 

5Some bolder interpretations of quatemionic equations (103) of the type, e.g., either (i) 
allowing for the transformations 4" = er~b, T + = - T =~ O' = P, or (ii) attempting to interpret 
q,'s as "states" which could be superposed with quaternionic coefficients, are outside the scope 
of this paper. Generalizations of these types would not leave invariant (100) equations which 
constitute the bridge between the quaternionic treatment of the evolution process and our 
basic Poincar6 invariant (d + 6 + x)a = 0 equations. For a quantum mechanical interpretation 
of the I-filbert space over quaternions see Finkelstein et al. (1962). 
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studied with the bosonic multiplet u interpreted as the carrier of interac- 
tions among the fermions. The free evolution of particles states--which in 
our case mixes the different spin states of a - - i s  not very essential, because 
in practice one always works in the interaction picture, where that evolution 
is precisely eliminated. 

Leaving the basic problem open, we will contribute at this point two 
remarks only. First, according to the equivalence (59), if uu and 6~, which 
fulfill K. G. equations are of the same order and K is big, then the u 0, 60 
and a~,,, members of the D 4 structure are smaller by the factor P/K, P being 
the order of magnitude of the linear momentum. Thus, in the limit P/K << 1, 
only u~, and 6~, would effectively participate in a hypothetical interaction of 
u = ~Up with the fermions. This can be perhaps understood as a hint that 
our dynamical scheme can be of interest from the point of view of the 
phenomenological " V - A "  theory of weak interactions. Second, we observe 
that given a spin = 1 / 2  spinor 4', the natural "sources" for our bosonic 
multiplet a, (d + 6 + K)u = j ,  can be guessed to have the shape 

j=4'+ ( g~ + g,,y~dx" + gt(1/Z)y~,~dx~' A dx" 

+ g,, * VsY~, dx~' + g~ * Ys} 4' (107) 

where g's are coupling constants. 

APPENDIX: A SPHERICALLY SYMMETRIC SOLUTION 

An explicit spherically symmetric solution to (d + 6 + K)a = 0 for the 
(flat) case of n = 4, signature (t, , , ) can be easily constructed. Indeed, 
specialize our equations in the form (95) for the case of 

Eu=O~r-Ze(t,r), b~=O~r-l~(t,r) 

q0= r- h(t, r), = r- iT(t, r) (A1) 
r ,= (xOx') 1/2 

Then, because 0u0,~ acting on (t, r) dependent objects amounts to 
- 1  ") r O;r, and taking into account that the definitions of e and ~ allows the 

gauge e - , e + k ( t ) . r ,  ~ , ~ , + k ( t ) . r ,  with k ,k  which can be chosen as 
convenient, one easily infers that (95) equations became equivalent to 

(0,-iK)h-0 e=0} 2 K _)e 0 
(Ot+tiK)e--h 0 =(--O~+Or--  = 

(O, - - iK)~- -~  = 0 }  
(O,+ix)~_O2r~= 0 = ( - - 0 2 + O ~ - - K Z ) ~ = 0  (A2) 
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Therefore, the general solutions of the (formal) for n = 2 K. G. equations, 
e( t ,  r )  and ~(t, r), determine entirely the spherically symmetric solution to 
( d +  6 + x)c t=0.  

Constraining further this solution to be static, i.e., somewhat analogous 
to the Coulomb field in the case of Maxwell equations, we arrive at 

e = eo e-~r, ~ = ~o e-~r 

h = ixeo e-Kr,  "h = iK~,o e -~r  (A3)  

where e o and g0 are (complex) constants. The sign of exponents have been 
chosen as minus, anticipating that it will help for convergence of (a,  a} = 
f s inOdOdepr2 dro, with 

However, with (A3), (a,  a} = -4~(le0l  2 + 1~,ol2) . f~d(r- l (1  + F r ) e  -2~r ) 
turns out to be divergent like - f~_d(1 / r )  = + ~ .  This is somewhat analo- 
gous to the divergence of f d  3 • ~q~ in the case of the static spherically 
symmetric solution to [ - ( h 2 / 2 m  ) O , O ~ - ih O + ]~b = O. 

It would be perhaps of some interest to examine on the level of general 
relativity [ n = 4 ,  signature ( + ,  , , - ) ] ,  the simultaneous solution to 

G,, = "8~r----Y-~ T~,,- T~,, defined by (42)--and (d + 6 + x ) a =  0 in the case of 
C 4 

the spherical symmetry: the resulting partial differential equations in (t, r) 
appear to be reasonably manageable. 

NOTE ADDED IN PROOF 

The equation (d + 6 + x)c~ = 0 was studied first by E. K~hler (1962), 
Rendiconti di Mat. (Roma) Ser V, 21. In its aspect of the Dirac-K~hler 
algebra, the equation as interpreted in terms of fermionic fields was dis- 
cussed recently by P. Becher, Phys. Letters (1981), 104B, 221 and P. Becher 
and H. Joos: DESY 82-031 (1982). 
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